# Convolution

Convolution is the correlation function of f(τ) with the reversed function g(t-τ).

The convolution operator is the asterisk symbol * .

### Continuous convolution

The convolution of f(t) and g(t) is equal to the integral of f(τ) times f(t-τ):

### Discrete convolution

Convolution of 2 discrete functions is defined as:

### 2D discrete convolution

2 dimensional discrete convolution is usually used for image processing.

### Filter implementation with convolution

We can filter the discrete input signal x(n) by convolution with the impulse response h(n) to get the output signal y(n).

y(n) = x(n) * h(n)

### Convolution theorem

The Fourier transform of a multiplication of 2 functions is equal to the convolution of the Fourier transforms of each function:

{f  · g} = {f } *{g}

The Fourier transform of a convolution of 2 functions is equal to the multiplication of the Fourier transforms of each function:

{f  * g} = {f } ·{g}

##### Convolution theorem for continuous Fourier transform

{f (t) · g(t)} = {f (t)} *{g(t)} = F(ω) * G(ω)

{f (t) * g(t)} = {f (t)} ·{g(t)} = F(ω) · G(ω)

##### Convolution theorem for discrete Fourier transform

{f (n) · g(n)} = {f (n)} *{g(n)} = F(k) * G(k)

{f (n) * g(n)} = {f (n)} ·{g(n)} = F(k) · G(k)

##### Convolution theorem for Laplace transform

{f (t) * g(t)} = {f (t)} ·{g(t)} = F(s) · G(s)